reaction vessel is maintained below 20 °C by cold water circulation. After 3 h, the solvent is evaporated under vacuo, and the product is isolated by using a silica gel column $(1.5 \times 10 \text{ cm})$: yield of 15, 97 mg (66%); recovered benzothiet, 6 mg (10%).

A similar experiment with dimethyl acetylenedicarboxylate (12) gave 13 in 57% yield. The recovery of benzothiet was 22%.

Acknowledgment. Financial support to this work was provided by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank the Alexander von Humboldt Foundation for the award of a Fellowship to K.K.

Registry No. 3, 63559-01-3; 6, 59130-11-9; 9, 496-31-1; 10, 263-06-9; 11, 84559-50-2; 12, 762-42-5; 13, 84559-51-3; 14, 941-69-5; 15, 66303-97-7; 16, 96-33-3; 17, 84559-52-4; 18, 84559-53-5; 19, 930-68-7; 20, 84582-82-1.

Vicinal ¹³C-¹³C Coupling Constants as a Configurational Probe: Stereochemistry of the Base-Catalyzed Double Bond Shift in Proacacipetalin

Jerzy W. Jaroszewski*

Department of Chemistry BC, Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark

Martin G. Ettlinger

Chemical Laboratory II, University of Copenhagen, DK-2100 Copenhagen, Denmark

Received July 7, 1982

In recent years a considerable amount of information about ${}^{13}C{-}^{13}C$ spin-spin coupling constants has become available,¹ confirming their potential utility for solving stereochemical problems. Although observation of ${}^{13}C{-}^{13}C$ couplings usually requires ${}^{13}C{-}$ enriched materials, which prevents them from being routinely accessible at present,² the usefulness or even uniqueness of the stereochemical information provided by ${}^{13}C{-}^{13}C$ coupling constants may sometimes make their use attractive, especially when introduction of the necessary label is straightforward. We report a case belonging to this category.

Proacacipetalin (1a),³ a natural glucoside occurring in *Acacia* species, undergoes isomerization in base to the conjugated isomer 2a, acacipetalin.³ The stereospecific

⁽¹⁾ Hansen, P. E. Org. Magn. Reson. 1978, 11, 215. Wray, V. Prog. Nucl. Magn. Reson. Spectrosc. 1979, 13, 177. Hansen, P. E. Annu. Rep. NMR Spectrosc. 1981, 11A, 65. Wray, V.; Hansen, P. E. Ibid. 1981, 11A, 99.

(3) Ettlinger, M. G.; Jaroszewski, J. W.; Jensen, S. R.; Nielsen, B. J.; Nartey, F. J. Chem. Soc., Chem. Commun. 1977, 952. nature of the isomerization became apparent when the reaction was carried out in deuterium oxide, which resulted³ in incorporation of one deuterium atom per molecule of product exclusively into the more shielded (¹H and ¹³C NMR spectra) of the two methyl groups of 2a.³ Similarly, 1b, a synthetic analogue of proacacipetalin, is converted by base to 2b, and isomerization in methanol-*d* yields a product containing one deuterium atom in the more shielded methyl group. However, unambiguous assignment of the methyl resonances in ¹H and ¹³C NMR spectra of 2a and 2b, and thus a decision as to whether the deuterated products are the Z isomers 3a and 3b or the E isomers 4a and 4b, cannot be made immediately.

Earlier studies on α,β -unsaturated carboxylic acids and esters indicated that vicinal ¹³C-¹³C coupling constants across a double bond may be suitable for differentiation between *E* and *Z* configurations.⁴⁻⁶ That the relationship ³J_{cis} < ³J_{trans}, familiar for ¹H-¹H and also established for ¹³C-¹H coupling constants,⁷⁻⁹ is likewise valid for vicinal ¹³C-¹³C couplings to the nitrile group in α,β -unsaturated nitriles is now demonstrated by measurement of ¹³C NMR spectra of 5-7 (Table I). The ratio ³J_{cis}/³J_{trans} for couplings

either within the same molecule (7) or in an E,Z isomeric pair (5 and 6) is 0.5-0.6 and overlaps the range of 0.55-0.7already established¹⁰ for ${}^{1}HC = CX$ (X = ${}^{1}H$, ${}^{13}C$) couplings in ethene and propene and their monocyano derivatives. For ¹HC=CX couplings in monomethoxy and monoacetoxy derivatives of ethene and propene both ${}^{3}J_{cis}$ and ${}^{3}J_{trans}$ are substantially reduced, and their ratio appears to be slightly lower (0.4-0.5).¹⁰ Synthesis of 2b enriched with ¹³C in the nitrile group and measurement of three-bond ¹³C-¹³C coupling constants to the methyl groups (Table I) show that the constants are reduced as expected compared with those of 7 by attachment of an oxygen atom to the double bond, for ${}^{3}J_{cis}$ is still clearly lower than ${}^{3}J_{trans}$, their experimental ratio being 0.6 rather than its reciprocal. Thus the high-field methyl resonance of 2b (and consequently also that of 2a) must be assigned to the methyl group trans to the nitrile group, and the deuterated

⁽²⁾ See, however: Bax, A.; Freeman, R.; Kempsell, S. P. J. Am. Chem. Soc. 1980, 102, 4849; J. Magn. Reson. 1980, 41, 349. Bax, A.; Freeman, R. Ibid. 1980, 41, 507. Sørensen, O. W.; Freeman, R.; Frenkiel, T.; Mareci, T. H.; Schuck, R. Ibid. 1982, 46, 180. Cf. also: Pinto, A. C.; Goncalves, M. L. A.; Filho, R. B.; Neszmelyi, A.; Lukacs, G. J. Chem. Soc., Chem. Commun. 1982, 293.

⁽⁴⁾ Marshall, J. L.; Faehl, L. G.; Kattner, R.; Hansen, P. E. Org. Magn. Reson. 1979, 12, 169.

⁽⁵⁾ Chaloner, P. A. J. Chem. Soc., Perkin Trans. 2 1980, 1028.

⁽⁶⁾ Hansen, P. E.; Berg, A. to be published. We thank Dr. P. E. Hansen, Roskilde University Center, for making the manuscript available to us prior to publication.

⁽⁷⁾ For a useful compilation of interproton three-bond coupling constants across a double bond, see: Martin, G. J.; Martin, M. L. Prog. Nucl. Magn. Reson. Spectrosc. 1972, 8, 163.

⁽⁸⁾ For a recent review of ¹⁸C⁻¹H coupling constants, see: Hansen, P. E. Prog. Nucl. Magn. Reson. Spectrosc. 1981, 14, 175.
(9) See also: Kowalewski, J. Prog. Nucl. Magn. Reson. Spectrosc.

⁽⁹⁾ See also: Kowalewski, J. Prog. Nucl. Magn. Reson. Spectrosc. 1977, 11, 1.

^{(10) (}a) ³J_{HH} coupling constants: Reddy, G. S.; Goldstein, J. H.;
(10) (a) ³J_{HH} coupling constants: Reddy, G. S.; Goldstein, J. H.;
Mandell, L. J. Am. Chem. Soc. 1961, 83, 1300. Graham, D. M.; Holloway,
C. E. Can. J. Chem. 1963, 41, 2114. Hobgood, R. T., Jr.; Mayo, R. E.;
Goldstein, J. H. J. Chem. Phys. 1963, 39, 2501. Freeman, R. Ibid. 1964, 40, 3571. Wuolijoki, E. Suom. Kemistil. B 1966, B39, 36. Feeney, J.;
Sutcliffe, L. H. Spectrochim. Acta, Part A 1968, 24A, 1135. Lequan,
R.-M.; Simonnin, M.-P. Bull. Soc. Chim. Fr. 1970, 4419. Williams, L. F.;
Bothner-By, A. A. J. Magn. Reson. 1973, 11, 314. Rummens, F. H. A.;
Simon, C.; Coupry, C.; Lumbroso-Bader, N. Org. Magn. Reson. 1980, 13, 33. (b) ³J_{CH} coupling constants: Vogeli, U.; von Philipsborn, W. Org. Magn. Reson. 1975, 7, 617. Douglas, A. W. Ibid. 1977, 9, 69. Ayräs, P. Ibid. 1977, 9, 663. Dubs, R. V.; von Philipsborn, W. Ibid. 1979, 12, 326.⁸

compd	CH CH				CH.	coupling constants, ^b Hz			
	C1	C2	C3	(cis^{c})	(trans ^c)	^{1}J	² J	³ J _{cis}	³ J _{trans}
5	116.6	100.1	151.1		18.4	79.1	<2		8.1
6	115.0	99.8	149.9	16.8		77.0	$<\!2$	4.7	
7	117.0	95.6	162.0	22.3	24.9	79.2	$<\!2$	3.8	7.6
$2\mathbf{b}^d$	114.1	122.7	136.2	20.3	17.5	91.6	8.2	2.4	4.1

^a The spectra were obtained with ca. 1% solutions in deuteriochloroform, degassed by freeze-pump-thaw cycles, at 67.889 MHz and with a digital resolution of 0.1-0.2 Hz per data point. ^b Absolute values. ^c C is and trans relative to the nitrile group. ^d Labeled with 90 atom % of ¹³C in the nitrile group. The remaining resonances: δ 18.6 (C4'), 24.8 (C5'), 29.4 (C3'), 62.6 (C6'), 98.3 (d, ³J = 1.5 Hz, C2').

products obtained from 1a and 1b have structures 3a and 3b, respectively. The stereospecific deuterium incorporation during the base-catalyzed double bond migration thus parallels the stereospecific base-catalyzed conversion of 2-propenyl ethers into (Z)-1-propenyl ethers.^{11,12}

The magnitudes of the remaining ${}^{13}C{}^{-13}C$ coupling constants reported in Table I deserve a few additional remarks. The most noteworthy is the unusually large value of ${}^{2}J$ in 2b as compared with those of 5–7, which is due to the presence of the oxygen function; a similarly drastic increase of a ${}^{2}J_{CC}$ coupling constant was earlier observed in derivatives of propenoic acid on substitution with nitrogen.⁵ The increase of ${}^{1}J$ in 2b relative to 5–7 is likewise caused by oxygenation of the α -carbon and parallels similar substituent effects on ${}^{1}J_{CH}$.^{8,9} The one- and three-bond coupling constants observed for the nitriles 5–7 are somewhat larger in absolute value than analogous ${}^{13}C{}^{-13}C$ couplings involving the carbonyl group in the corresponding α,β -unsaturated carboxylic acids.^{4,6}

Experimental Section

3-Methyl-2-[(2-tetrahydropyranyl)oxy]-3-butenenitrile (1b) was obtained from 2-hydroxy-3-methyl-3-butenenitrile¹³ and 3,4-dihydro-2*H*-pyran in the presence of traces of HBr. Distillation [bp 90-100 °C (ca. 10 mmHg)] gave a 1:1 mixture of two racemic diastereoisomers of 1b: retention times of 4.8 and 5.4 min [3% OV-101 dimethylsilicone on Chromosorb W (80-100 mesh), 1.8 m × 2.4 mm i.d. steel column, at 140 °C and a nitrogen flow of 20 mL/min]; IR (film) ν_{max} 2245 (w) cm⁻¹; mass spectrum, m/e(relative intensity) 181 (1.5), 180 (1.5), 153 (5.5), 85 (100). The diastereoisomers could be partially separated by distillation, enabling assignment of the NMR signals. Diastereoisomer with shorter retention time: ¹H NMR (CDCl₃) δ 1.92 (CH₃), 4.96 (H α , exchangeable for deuterium in base), 4.99 (H2', t, ³J \approx 3 Hz¹⁴), 5.15 and 5.35 (olefinic protons), signals of the remaining protons at δ 1.5–1.9 and 3.5–3.9; ¹³C NMR (CDCl₃) δ 18.5 and 18.7 (CH₃ and C4'), 25.2 (C5'), 29.8 (C3'), 62.3 (C6'), 67.3 (C2), 96.4 (C2'), 116.1 (C4), 116.9 (C1), 137.8 (C3).¹⁵ Diastereoisomer with longer retention time: ¹H NMR (CDCl₃) δ 1.87 (CH₃), 4.73 (H2', t, ³J \approx 3 Hz¹⁴), ¹⁶ 4.80 (H α , exchangeable for deuterium in base), ¹⁶ 5.15 and 5.25 (olefinic protons), signals of the remaining protons at δ 1.5–1.9 and 3.5–3.9; ¹³C NMR (CDCl₃) δ 17.7 and 18.3 (CH₃ and C4'), 25.2 (C5'), 29.8 (C3'), 61.9 (C6'), 68.5 (C2), 97.5 (C2'), 117.0 C4), 117.5 (C1), 137.6 (C3).¹⁵

3-Methyl-2-[(2-tetrahydropyranyl)oxy]-2-butenenitrile (2b) was obtained by isomerization of 1b in 0.1 M methanolic NaOH at room temperature during 5–10 min (the half-life of 1b under these conditions, measured spectrophotometrically, was about 30 s) and vacuum distillation [bp 60 °C (ca. 10 mmHg)]: IR (film) ν_{mar} 2213 (s) cm⁻¹; UV (CH₃CN) λ_{mar} 223 nm; mass spectrum, m/e (relative intensity) 181 (1.5), 85 (100); ¹H NMR (CDCl₃) δ 1.87 and 1.96 (methyl groups), 5.23 (H2', t, ³J \approx 3 Hz¹⁴), signals of the remaining protons at δ 1.5–1.9 and 3.6–3.9; ¹³C NMR, see Table I.¹⁵

When 1b was converted to 2b in methanol-d (99.5 atom % of deuterium), the product contained about 85 atom % of deuterium¹⁷ (¹H NMR and mass spectra), all of which was present in the more shielded methyl group: ¹H NMR δ 1.85 ($|^2J_{\rm HD}|$ 2.1 Hz), ¹³C NMR δ 17.2 (¹ $J_{\rm CD}$ = 19 Hz) (cf. deuterated 2a³).

Labeled Compounds. Labeled 2b was obtained as described above by starting with $K^{13}CN$ (90 atom % ^{13}C). The nitriles 5–7 were prepared by heating neat 3-bromopropene or 2-methyl-3chloropropene with a 50 % molar excess of $K^{13}CN$ (90 atom % ^{13}C) at 130–140 °C in Teflon-sealed vials during 3–4 h and were used without purification. In the former case the product consisted of 5 and 6 in a 2:3 ratio (¹H NMR),^{11c,18} the assignment of ¹³C resonances (Table I) being based on spectra of pure 2-butenenitriles.

Acknowledgment. We are indebted to Dr. Kjeld Schaumburg (Chemical Laboratory V, University of Copenhagen) for recording ¹³C spectra reported in this work on a Bruker HX-270S spectrometer, made available by the Danish Natural Science Research Council.

Registry No. 1a, 66871-89-4; (\pm)-1b (isomer 1), 84499-47-8; (\pm)-1b (isomer 2), 84499-48-9; 2a, 644-68-8; (\pm)-2b, 84499-49-0; (\pm)-2b-1-¹³C, 84520-43-4; (\pm)-3b, 84499-50-3; 5, 84499-51-4; 6, 84499-52-5; 7, 84499-53-6; K¹³CN, 25909-68-6; (\pm)-2-hydroxy-3-methyl-3-butenenitrile, 84499-54-7; 3,4-dihydro-2*H*-pyran, 110-87-2; 3-bromopropene, 106-95-6; 2-methyl-3-chloropropene, 563-47-3; 3-butenenitrile-1-¹³C, 84499-55-8.

^{(11) (}a) Prosser, T. J. J. Am. Chem. Soc. 1961, 83, 1701. Broaddus,
C. D. Ibid. 1965, 87, 3706; Acc. Chem. Res. 1968, 1, 231. Caubere, P.;
Hochu, M.-F. Bull. Soc. Chim. Fr. 1968, 459. Elphimoff-Felkin, I.; Huet,
J. C. R. Hebd. Seances Acad. Sci., Ser. C 1969, 268, 2210. Kloosterziel,
H.; Van Drunen, J. A. A. Recl. Trav. Chim. Pays-Bas 1970, 89, 32. (b)
Cf.: Hunter, D. H. In "Isotopes in Organic Chemistry"; Buncel, E., Lee,
C. C., Eds.; Elsevier: Amsterdam, 1975; Vol. 1, p 135. (c) See also:
Crump, J. W. J. Org. Chem. 1963, 28, 953. Descotes, G.; Laconche, P.
Bull. Soc. Chim. Fr. 1968, 2149. Mialhe, Y.; Vessiére, R. Ibid. 1968, 4181.
Procházka, M.; Zelinka, J.; Vilim, A.; Cerný, J. V. Collect. Czech. Chem.
Commun. 1970, 35, 1224. Procházka, M.; Uchytil, B.; Zelinka, J. Ibid.
1974, 39, 1342.

⁽¹²⁾ Čarbanions similar to those derived from 1a and 1b by abstraction of the α -proton have been reported to yield, on reaction with aldehydes and ketones at the γ -position, single geometrical isomers of undetermined stereochemistry: Jacobson, R. M.; Lahm, G. P.; Clader, J. W. J. Org. Chem. 1980, 45, 395. The configuration of these products now seems likely to be Z. Cf.: Hertenstein, U.; Hünig, S.; Öller, M. Chem. Ber. 1980, 113, 3783. Hünig, S.; Öller, M. Ibid. 1980, 113, 3803; 1981, 114, 959. (13) Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1973, 95, 553. (14) Indicating prodominantly avail origination of the substrates of

⁽¹⁴⁾ Indicating predominantly axial orientation of the substituent on the tetrahydropyranyl ring. Cf., for example: Pierson, G. O.; Runquist, O. A. J. Org. Chem. 1968, 33, 2572. Anderson, C. B.; Sepp, D. T. Tetrahedron 1968, 24, 1707. de Hoog, A. J.; Buys, H. R.; Altona, C.; Havinga, E. Ibid. 1969, 25, 3365.

^{(15) &}lt;sup>13</sup>C resonances of the tetrahydropyranyl moiety were assigned by using data of: de Hoog, A. J. Org. Magn. Res. 1974, 6, 233. Cf.: Pothier, N.; Rowan, D. D.; Deslongchamps, P.; Saunders, J. K. Can. J. Chem. 1981, 59, 1132. (16) Cf. the relationship between chemical shifts of anomeric and α

⁽¹⁶⁾ Cf. the relationship between chemical shifts of anomeric and α hydrogens and GLC retention times of per-O-trimethylsilyl derivatives of proacacipetalin and epiproacacipetalin.³

⁽¹⁷⁾ The proportion of undeuterated **2b** found suggests that some of the isomerization may have occurred by an intramolecular hydrogen shift.^{11b}

⁽¹⁸⁾ The crude mixture of 5 and 6 also contained the unconjugated isomer 3-butenenitrile- $I^{-13}C$ (δ (¹³C) 21.0 (C2), 117.1 (C1), 119.2 (C4), 125.5 (C3); in CDCl₃], the previously unreported ¹³C-¹³C couplings in which were ¹J = 57.7 Hz, ²J = 4.1 Hz, and ³J = 4.5 Hz (absolute values).